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HIGH FREQUENCY VIBRATIONS OF PIEZOELECTRIC
CRYSTAL PLATES

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York. N.Y.

Abstract—Two-dimensional equations of motion of piezoelectric crystal plates are obtained by retaining early
terms of power series expansions of the mechanical displacement and electric potential in a variational principle
for the three-dimensional equations of piezoelectricity.

INTRODUCTION

THERE have been two previous formulations of two-dimensional equations of motion
of piezoelectric crystal plates applicable to frequencies as high as those of the fundamental
thickness-shear modes. In the first [1], the reduction of the classical equations of piezo-
electricity from three to two dimensions was based on an approximation involving the
early terms of series expansions of the mechanical displacement and electric potential in
powers of the thickness coordinate of the plate. Only flexure, thickness-shear and thick-
ness—twist modes were taken into account. The equations were extended, subsequently [2],
to include the face—extension and face-shear modes (the “‘contour’ modes) in a treatment
based on power series expansions of the mechanical displacement and electric displace-
ment. In the present paper, equations of somewhat simpler form, including the flexure,
thickness—shear, thickness—twist and contour modes, are obtained by means of power series
expansions of the mechanical displacement and electric potential. The derivation em-
ployed is a revision (to introduce a variational principle) and an extension (to include the
electric field and the thickness modes) of one devised by Cauchy [3] to deduce the classical
equations of low frequency vibrations of anisotropic plates (flexure and contour modes
only) from the three-dimensional equations of elasticity. The two-dimensional equations
are derived in condensed form for the triclinic crystal, but they are displayed in detail for
the case of the rotated-Y-cuts of quartz—the crystal cuts most widely used for resonators
at the present time. Shear correction factors, of the type employed by Bresse [4] and Timo-
shenko [5] in the theory of beams, are introduced and their values are determined by
equating the thickness—shear frequencies obtained from the two- and three-dimensional
equations [1].

THREE-DIMENSIONAL EQUATIONS

The three-dimensional equations of piezoelectricity, from which the two-dimensional
equations are to be deduced, follow.
The field equations are
T, = pii;, D,=0, 1)

ij,i ii
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where the T;;, u; and D, are the components of stress, mechanical displacement and electric
displacement, respectively, and p is the mass density.
The constitutive equations are

Tij=

CrSu — @ijBrr Dy = e Sy +e E; (2)

where the ¢, ¢,;;and ¢;; are the components of elastic stiffness, piezoelectric strain constant
and dielectric permittivity, respectively, and the §;; and E; are the components of strain
and electric field—expressed in terms of the u; and the electric potential ¢ by

Sy = 3wy, +u ), Ei=—-q,;" (3)
Combining (1)+3), we have the equations governing the u; and ¢:
Cigtthy,1i + €xif® g = PU;, il ik — 9,55 = 0. 4)
These equations may be derived from the following variational principle: in a region V
bounded by a surface S, with outward normal n,
o’fn dtf (K-H)dV + Jm dt r (t;0u;+0dp)dS =0 (5
to 4 o vs
for independent variations of the u; and ¢ between fixed limits at times ¢, and ¢,. In (5),
K is the kinetic energy density:
K = $pu,
and H is the electric enthalpy density (the energy density less E,D):
H= %Cijklsijsm“"stijEiEj“eijkEtsjk
so that
T,; = 0H/0S,;, D, = —0H/JE,.
Also, in (5) ¢, is the surface traction and o is the surface charge. We have

11 ty 151 t
(5f K dt =f pu; b6u;dt = [plijéuj]jg—f pii; du;dt = -f pii; ou; dt,
to

to

af HdV = f[(aH/asi,)as +(H/OE) SE) dV = f(T.éu,,,.+Di5<p,,.)dV
=f [(T;; 0uy) .~ Ty, 6u;+(D; 3¢) ,— D; , 6] AV
v

f AT, 6u;+ D, 6¢)dS — J.(sz,bu +D;;dp)dV.
s
Hence, (5) becomes

to | 4 to S

from which follow the natural boundary conditions
nT; =1, nD,=oc on§ 6)

itij
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or, alternatively, specification of surface displacement @ and surface potential @:
u; = u., Q= (-p. onS (7)

and the field equations (1) as Euler equations which, with (2) and (3), produce the equations
(4) on the u; and ¢.

SERIES OF TWO-DIMENSIONAL EQUATIONS

The plate is referred to rectangular coordinates x; with the faces, of area 4,at x, = +b
and with x, and x, the coordinates of the middle plane which intersects the right cylin-
drical or prismatic boundary of the plate in a curve C. We assume that the mechanical
displacement and electric potential can be approximated by power series in x, :

w=Y x5 =3 x30", ®)
where u{® and ¢™, n = 1,2.. .k, are functions of x,, x; and ¢ only. Then, from (8) and (3),
Sy =2 X387,  E =Y x3EP, &)

where
S§ = Hull +ul+(n+ S ul " V46,40 )], EP = —oP—(n+ 160" 0. (10)
We have now to reduce the variational principle (5) to two dimensions. Consider,

first, the surface integral and separate it into integrals over the faces and the cylindrical
boundary:

L (t;ou;+0 dp)dS = L n{T;; ou;+ D, b¢) dS
-y f [x3(T,, 64 + D, 5™}, dA
n YA

b
+3¥ § f xyn(T,; 6ul + D, 69p™) dx, ds,
nvYCY~b

where the index a ranges over 1 and 3 only and s is the coordinate measured along the curve
C. Define face-tractions TV, face-charges D™, edge-tractions ™ and edge-charges d™
according to

T}") = .B;l[szzj b_.by D(n) = Bn-l[x;DZJb—b’
b b

=5 [ xoTiedn, @ =8 [ ambicdx,
b -b

where
B, = 2b*"*1/(2n+1).
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Also, define

b b
K=f K dx,, §=f Hdx,.
-5 -5

Then the variational principle (5) becomes the two-dimensional one: for independent
variations oul™ and d¢'™ between fixed limits at 7, and ¢, :

) L3
5 f dt f (R-H) dA+f dt | Y B(T® 6ul+ D™ 5o™) dA
to A to An

+ f " ar ) X B duP+d® 59) ds = 0. (11)

For the kinetic energy density K, we have

b b
-b ~b m n m n
where

B, =2"""" Y im+n+1), m+neven

and B,,, = 0 for m+n odd. Further,

1] ) t
[ oRat = p L% Bl ul—p [ L5 B suip
to m n

to m a
or
[orar=-p " S S B suP dt. 12)
to to m n
As for the electric enthalpy density H, we have
0H = J.bbéH dx, = fb (T;;08;;— D, 6E)) dx,
- -5
or, with (9),
oH = bbz X3(T,; 681 - D, SEM) dx, = ¥ (T(p 85— Di® ("), (13)
where T{} and D™ are the components of stress and electric displacement of order n:
T = fbb x3T;dx,, DI = r x3D; dx,.
- -b

Upon substituting (10) into (13), we have
SH = T {TIus+(n+ 13,2 St V) + D3 +(n-+1) 39+ ]}

= T TG du+ D 8¢™),~ L [T =Ty ) du? + (D —nD§™ 1) 5],
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whence

f 6H d4 = gf 2 ndT) u + D" 6g™) ds
A4 Cn

— | TUTE,—nTE ) 6u + (D —nDY~Y) 50" dA. (14)
An

Inserting (12) and'(14) in (11), we arrive at the series form of the two-dimensional variational
equation :

13
; f de L (ﬂ??:—nT‘z","wB,.T‘,"’—p;B,,,,.a;*‘) su™ dA
11
+ Zf de f (D¢)—nD§ ™Y+ B,D™) 5o dA
n Yo A

+ 3 [ drf (B —n, T 51+ (B4 -1, D) 56 ds = 0,
n Yo C

from which follow the field equations, in A,
T ~nTg D+ BT = pT B, DY—nD§~"+B,D" = 0

and boundary conditions
nTS = BA,  nD = BA® onC.

Alternative boundary conditions are prescribed displacements i#{ and prescribed poten-
tials ™ on C:

ug"" - ﬁ}n)’ q,(n) = 6(") on C.
The constitutive equations of order n are obtained as follows:

b b b
T(i’}) = J- x3T;dx, = f XHCipSia— ekijEk) dx, = J. Z x';x;(cuktS}zT) =€y ]E;:")) dx,,
-b -b

-bm
b b b
D = J- x3D;dx, = f x3(euSp +&;E) dx, = J‘ 2 X3x5(eySE +e,Ef) dx,,
~b -b ~b'm

whence,

T?}) = Z an(cijklsg?)_ekijE}(M))’ Df-"’ = z an(eijk j',"')+eUEfi”"). (15)

TRUNCATION OF SERIES AND ADJUSTMENT

The process of truncation of the series and adjustment of the remaining terms begins
with the discard of the strains and electric fields of order higher than the first, leaving
SO, S, EP, EM which contain the zero, first and second order mechanical displace-
ments, 1, "), 4{? and electric potentials, /@, 'V, ¢'®, some of which will be eliminated
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subsequently. However, at this stage the constitutive equations (15) reduce to
T = 2b(c, ;S\ — i L), D = 2b(eu,,S‘°’+e.-E‘»°’), (16)
T.(U = %bs(culdsgd) ekuEk”) D(i“ = §b3( uk j +£ E“)) (17)
and these are derivable from the electric enthalpy density
H= b(cuktsg?’s}c?)"singmEgo)_ZeijkEf'o)Sg'g))""‘}bj(cijktsg} 'St =& E{VEN — 2e,, E(VSE)
according to
Ty = 0H/oS(}, D™ = —oH/OE™, n=0,1.

Next, following Cauchy [3], we neglect the velocxty i in the kinetic energy density, and
provide for free development of the strain S{(=u'") by setting TY) = 0 in (16). Thus,

92 = 2b(c200SK) — €422EX) = 0. (18)
Add c,,,,5) to each side of (18) and divide by c,,,,:
S = —C22uS0 /2222 + 55 + €22EC 222 (19)
Now, add and subtract c;;,,5%) to the expression for T{’ in (16):
@H)T'TY = (ciuSQ — ij225TD + 122553 — euiy EL. (20)

Finally, substitute the expression for Y, given in (19), for the S} outside the parentheses
in (20), to obtain

TE? )= 2b(5ijkls£?)—ékuE}xo)), (21)
where

Cipt = Cijka— Cij22€224/€2222 > €hij = €ij—€x22€ij22/Ca222-
Note that, in (21), T} is now zero and S} (=u4") is no longer present.

The first order terms are treated similarly except that all three velocities 4! are neg-
lected in the kinetic energy density and free development of the three strains 5% is ac-
commodated by settmg TY) = 0 in (17). When so many components of stress are to be
set equal to zero, it is simpler to start with expressions for the strains in terms of the stresses.
To do this, first define elastic compliances, s,,,, and piezoelectric strain constants, d,,,
according to [6]

SijmnCijkt = Lmmki> dymn = SijmnCrij
where I, is the fourth rank unit tensor. Then multiply the formula for T{}’, in (17), by
Sijmn tO Obtain
sijmnn}) = %bS(S(ml") '—dkmnEgcl))' (22)

In (22), set T = 0, ¢'® = 0, so that we may write
Sapca Ted' = $0° (84 —d o EL), (23)

where the subscripts a, b, c, d range over 1 and 3 only. Now, solve the three equations (23)
for the three independent T'}:

T = 30° A0 A3 — decs EL VY I uned, (24)
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where the determinant {s,, /| is given by
S1111 S3311 S13n
ISabedd = | S1133 S3zaz Siass

51113 Sazia Si1313
and A,,, is the cofactor of s,,, in |s,,. 4. The expression (24) may be written in the form
TG = $b(cisls St — €lELY), (25)
where
C:IL):d = Aabcd/lsabcd" em = dcdecgﬁie'
The constants c{}), are Voigt’s (7] constants y,,, p, g = 1, 3, 5.
At this stage, an electric enthalpy density that produces the stresses T} in (21) and
T%) in (24) is
H = b(E;yS\)'S\Y — e, ELVE” - 2¢,, EL'SY)
+ 32l eSer St — e EVEL — 26 EVSLY)
and this form also fixes D{® and D'"’ through
D\® = —oH/OE®, DV = —gH/OEYM.

The final adjustment is made by introducing shear correction factors analogous to those
employed in beam theory by Bresse [4] and Timoshenko [5]. The thickness-shear strains
SY) and SY) are replaced by x,SY) and x,SY) in the electric enthalpy density, where i,
and x, are correction factors whose values may be chosen in such a way [1] that the im-
portant thickness-shear frequencies have the correct values, thus compensating, in part,
for the omission of terms of higher order in the series expansions. The final form of the
electric enthalpy density is, thus,

— B(A0) QO)Q(0) 0) (0 (0) [(0) (0)
H= b(cijklsgj Sy ’sijEf' )Efi )_ZekijE;: )S(ij )

1H3( (1) Qg(l HE( 1 QL)

+ 3D aSeh St — e ESVELY — 2e ) EQVS(Y)

where
(0)

- z 0) — 5
i = KisjooKiwr-28ijas €] = Ki4 - 28,;; (notsummed)
and p and v are the powers
u = cosi(ijn/2), v = cos*(kln/2).

Thus, ¥, ;_, (or x;,,_,) is equal to x,, k3 or unity according as i+j (or k+1l)is 3, 5 or
neither, respectively.

RECAPITULATION

The equations and variables remaining, after truncation of the series and adjustment
of the terms retained, are

Kinetic energy density

+(0)2(0 25011
K = pb(Pu® +3b>uVull)).
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Electric enthaipy density
A = b SPS -, BB~ 24E0SY)

DAL SSY ~ 2 BB ~ 2 E S

Strain-displacement relations
SO = H U+ S 541, S = Mo+

Electric field-potential relations

B = ~oP=3a0" BN = o
Constitutive equations
T = GH/oSP = WARS - 4DES), DO = —3H/OE® = PSP+, EP)
TP = OB/OSY = BA(ULSY —eBEY), DY = —GRJOEL = B (ESY + e ER)

Variational principle

141  #]
f dt f (K—HydA + f de f [2K(T® 5ul® + D@ 5%) + 33T 3l + DIV 6] d A
o A to A

ty

+ f dt § [(2b£9 — 1, T®) 6ul® + (264 D) 50*] ds
to c
t1

+ f dxj& [BB34) —n, TL) uld) + (3624 — n, D)0 ™M) ds = 0.
to C

Field equations
T +2bTY = 2bpil®
DY +2D% =0
TR -TQ+TY = $bpil?
D) —-DP +4b°DY = 0.
Edge conditions
n, T = 2bt® or u? =g?
nD® = 2bd® or @@ =¥
T =300 or W)=

n DD =330 or M = v
Equations on u®, ulV), ¢, 'V
il + 004D + )% + T = piil®
AN+ 3108~ 9+ DO = 0
clprattlids + €530t 0 — 30 e il + 82 ) + €300 + P V] + T = pilf!”

{80052 — 'l — 35" e + 2 — €020 — 220 ]+ DV = 0.
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APPLICATION TO ROTATED-Y-CUTS OF QUARTZ

After performing the summations over repeated indices in the preceding equations,
it is convenient to employ the abbreviated notation in which a pair of indices, ij or kl, is
replaced by a single index, p or g, ranging over 1-6 according to [6]

jorkl=11 22 33 23,32 31,13 12,21

porg=1 2 3 4 5 6
Then
= cs}kl Voq» €xij = €ip>
nifi =j k=1,
Sij1 -%s fi=jks#l or i#tjk=]|
snxft #j,k#1,
dy, if i = j,
dui; = { v
i'dkp ifi #* j.
For the rotated-Y-cuts of quartz, many of the constants are zero. If x, is the digonal
axis in the plane of the plate [8]:

Cijut

€15 = Cig = C25 = C26 = C35 = C36 = C45 = C46 = 0,
S1s = 816 = Sy5 = S35 = S35 = 53 = Sg5 = 546 = 0,
€)1 T €3 T € T €y, T €3 = €33 =€ = e, = €5 =€,6=0,
dyy =dyy =dy; =dy, =dy3 =dyy =dyy =dy, =dys=dys =0,
€15 = &3 =0.
The equations on 4%, u!), ‘¥, ¢'*) then reduce to
&y 180y +essullhy + (K Cog+HaC Uy 3 +(E 3+ csshuf)
+ KOsty +ic38 U8 + 8,9 T) +eas0 S+ TP = pidl?, (26)
(k1 Cs6+ K381 U 3+ KCeatl) 1 + K30, qUT 53 +K3C34U5h 3
+KZCee!) +K3C, UL + (k€36 + K38, JO D) + T = pii), (27)
@13+ Css® s +iciCseUy ; + K38 U5 3+ Costl); +E33u);
+ K Coell) +KalaUlh +(E13+ e300y + T = i, (28)
&y +e3sulh g+ (0 036 + K38 Uy 3 + (€3 +e3 508 5
+K1e36Ut s + K38 408 — 21,0 — £330+ DO = 0, (29)
P12+ YssUha + (3 + s us s s +eiNo ) + o)
—3b™ [ikicesu) +u) + K csUD+ ulh) + K, €360D + K, €,60 ]+ T = pit), (30)
(713 + 75T 3+ yssulth s +yaaulths + (e + e o' ih

—3b7 (K384 (uDh + U + 1038, () +K3C3 ) +K38,,0' D]+ T = pidld), (31
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D1 1), (1 1 4 eug 1
eul) | +elully s + (el + el s —e, 00 —&530'5)
0 0 ©
—3b7 %[k, 056U +ul) + e 5(uS) + i) — 63309 2,0+ DV = 0. 32)

In these equations,

Cyy =€y —C1y/Cay €13 = €13—C3€23/Cy
C33 = €33—C33/C2; Cia = C1a—C13€24/Cs
Cag = C44"c§4/czz C34 = C34—C33C24/C33
Y = $33/(811533—513) Y1z = —513/(81,533—5%3)
V33 = $11/(511533—513) Vss = 1/5ss

€11 = €11 —€;3€,5/Cay e} =d;\y,,+di3vss
€13 = €;3—€,3C23/C; ety = dy v +4d13733
€14 = €14~ €13C24/C3 €59 = dys7ss.

Note that the primes employed by Sykes [8] are omitted here.

It remains only to fix the values of the shear coefficients «, and «;. This is done [1] by
equating the thickness-shear frequencies obtained from the two-dimensional equations
(26)<(32) to the corresponding frequencies obtained from the three-dimensional equations.

In (26)-(32), set all spatial differential coefficients equal to zero. The last three equations
then reduce to

..3b_2(Kf666u(11)+'€1925¢m)+ T(ll) = pa(ll)’ (33)
36~ 23,0+ TP = pi), G4
—-3b~Z(Kxezsug”'822¢(1))+D“) =0. (35)

It may be seen that the thickness-shear displacement u{" is coupled to the electric field,
but ¢! is not. In the former case, a thickness-shear vibration may be driven by an alter-
nating voltage Ve’ applied to electrode films deposited on the faces of the plate: Then, if
the two films are alike, the surface conditions are

T1lsp = F200'i] s, Plip = £V,
where 2p’b’ is the mass per unit area of each electrode film. Accordingly, in (33) and (35),
T = —3Rpil, M) = Ve,

where R(=2p'b’/pb) is the ratio of the mass per unit area of both electrode films to the mass
per unit area of the plate. If we set

Ul = Ae
we find, from (33),
A = 3x,6,5V/b[b*(1 +3R)pew? — 3xiceel. (36)
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Hence, resonance occurs when
w? = 3xkdcge/pb*(1+3R),  (x, with electrodes) 37
and the surface charge, off resonance, is obtained from D) in (35):
D,)%, = $b>DM) = 2b7 (k6,6 A —¢5,V) €,

where A is given in (36).
In the absence of electrode films, the traction and charge on the faces are zero, i.e.

T =0, D¥P=90
in (33) and (35). Then with
ul) = 4ei', @) = Bel™,

(33) and (35) become

(x3ces ~4pb*wH)A +x,€,6B = 0,

K,e,64—8,,B =0,
from which, by elimination of 4 and B,
? = 3xd2sc/pb?  (x, without electrodes) (38)
where
Ces = Ceg+€36/223-

In the case of thickness-shear ir the x;-direction, (34) applies. When there are electrode
films, we set

TV = —3Rpiiy", u{) = A
and find
? = 3x2¢,/pb*(1+3R) (x, with electrodes). (39)
In the absence of electrodes, T{" = 0 and (34) yields
w? = 3x2¢,,/pb* (x; without electrodes). (40)

The four frequencies given in (37)+(40) are to be equated to the corresponding frequen-
cies obtained from the three-dimensional equations (4) and boundary conditions (6) or

().
For thickness-shear in the x,-direction, the pertinent solutions of the three-dimensional
equations are given by Bleustein and Tiersten [9]. For

R=20b/pb « 1, Ki¢=e€lg/t,,866 <1,
they find, for the plate with electrodes,
@? = n284e(1 — R—4k2/n?)24pb? (41)
and, without electrodes,
w? = n22q4s/4pb>. (42)
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Hence, equating (41) and (42) to (37) and (38), respectively, we have, for R « 1, k%, < 1,
(m?/12)(1 + R ~8k2/n?) (with electrodes)
n?/12 (without electrodes).

2
Ky

2
K1

For thickness-shear in the x;-direction, the solution of the three-dimensional equations
is described in [10]. For R « 1, the frequency is found to be, after correcting an error in
equation (43) of [10];

w? = nPcy(1 — R)*/4pb?, (43)
where
¢y = H{eaa+caa—[(Cr2—Cas)® +4ci ]H)
Without electrodes, the corresponding frequency is [11]
w? = nc,/4pb*. (44)
Hence, for R « 1, we have, upon equating (43) and (44) to (39) and (40), respectively,
k3 = (n?/12)(1+ R)c3/¢,4 (with electrodes)

k3 = (1?/12)c3/C4a (without electrodes).
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AGCTpakT—IIpHBOOATCR OBYXMEPHME YDABHEHHA [ABHKCHHA TMbC30MICKTPHYCCKHX KPHCTATUIHYECKHX
TIACTHHOK, MYTEM COXPAHCHHA NEPBLIX BRPAXKCHHN B PA3NOKCHHAX B CTENCHHBI] PAM, IS MEXAHH4YECKOTO
MEPEMELLCHHSA H WICKTPHYECKOTO MIOTEHUKANA, B BADHALIMOHHOM MPHHLMNCG NS TPEXMEPHBIX YDAaBHCHUH
NbE30VIEKTPRIHOCTH.



